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Abstract 

Abalone are becoming increasingly popular for human consumption which has 

resulted in significant production-related issues arising in attempt to meet 

market demand. Farming practices have remained mostly unchanged and 

traditionally are heavily reliant on human inspections and approximations which 

is time consuming resulting in high labour costs. Alternatively, machine vision 

can be used to automate growth monitoring, by providing fast, objective, and 

accurate results. These techniques have been successfully applied to other 

aquatic products such as fish and oysters, but suitable techniques are notably 

lacking in abalone aquaculture. This study introduces a new mobile-based 

method of counting and measuring abalone, that is both network and location 

independent. We propose, and substantiate through several aquaculture-centric 

experiments, that the instrument outperforms traditional counting and measuring 

techniques in both speed, and accuracy, and outline some limitations discovered 

when applying the system under certain situations. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

Aquaculture is the practice of farming aquatic plants and animals through the 

modification and manipulation of natural ecosystems. In recent times, 

aquaculture has seen a rapid increase in uptake, at a rate of approximately 4-

11% annually due to escalating market demands based on increased human 

consumption combined with general decreases in wild commercial yield [1]. 

Aquaculture has thus been regarded as a reliable means of increasing food 

security for people worldwide [2].  

 

One of the most highly sought after aquacultural creatures is the Abalone. Being 

one of the rarest and most expensive of any seafood, Abalone are a type of 

single-shelled marine snail that are found in very few parts of the world. As such, 

the commercial Abalone aquaculture sectors in Australia, particularly the 

Greenlip Abalone (Haliotis laevigata) have gained significant popularity in 

particular because of their high demand and export potential. Consequently, this 

uptake in interest has resulted in a proportional increase in price, and thus, 

abalone production and growth mechanism have become areas of high potential 

[3]. However, the methods of abalone farming have remained mostly unchanged 

and require comprehensive support from trained technical staff. Beginning from 

the abalone’s nursery stages through to when they are market-ready, farmers are 

typically required to dedicate approximately 4 years of observation and labour 
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which attests to the need of optimizing production management for consistently 

high yield rates.  

 

Traditionally, farmers have used a combination of manual inspection and 

approximation techniques in favour of total population counting and measuring 

by hand [4, 6]. However, as the scale of production increases based on market 

demand, the inaccuracies inherent within these techniques become magnified. 

For abalone in the nursery stages, farmers select a small sample of juvenile 

abalone growth plates, count the amount, and then apply averaging techniques 

to approximate their stock count [25]. Similar counting methods are applied for 

the later stages of growth, but in addition, abalone are usually weighed, and their 

lengths are hand-measured which results in significant disturbance of the 

animals when they are removed from their substrate [5]. Moreover, these 

practices are highly time consuming, inaccurate, and susceptible to human error 

which further demonstrates the need for a superior system. 

 

Thus, techniques to automate abalone measuring and counting processes have 

become areas of high potential. Much effort has already gone into applying 

vision-based techniques to other aquaculture areas such as fish, however, little 

research has been conducted in the domain of automating abalone farming [8]. 

Moreover, there are inherent issues with other techniques that prevent them 

being applicable to this research, and problematic to translate to an abalone 

context. In general, issues with current methods such as location dependence, 

expensive setup and maintenance costs, network reliance and non-real time 

systems causes them to be arguably ineffective and suboptimal for monitoring 

abalone growth. This is because the operating environment of onshore and 

offshore abalone farms can be unpredictable in terms of environmental 

conditions, weather, and network coverage [25]. Thus, real-time results, 

freedom of location and non-obligatory network connectivity would allow 

farmers to enhance their current monitoring practices without the burden of 

additional running expenses from complex server-client based setups.   
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Rapid advances in mobile technology by way of computational efficiency and 

power, combined with their widespread availability and convenience in modern 

times has made it an ideal candidate for addressing the limitations of previous 

approaches. Leveraging this increase in power, more opportunities to utilise 

recent technology paradigms including Augmented Reality (AR) and Deep 

Learning (DL) object recognition have become possible to run effectively on 

mobile devices. These techniques can provide measuring and counting 

functionality and by nature, will overcome some issues with previous 

approaches. Moreover, there have been several instances in research where these 

techniques have been utilized effectively in other domains for a variety of real-

time inspection tasks, ranging from tourism to on-site training, and medicine, 

but have yet to be widely adopted in aquaculture [4, 7, 10, 11].  

 

Figure 1 – An Example of an AR Instructional System Integrated with 

Object Detection [11] 

 

1.2 Problem Statement and Research Questions 

Thus, to develop an improved abalone measuring and counting system, there is 

a core research question that must be addressed by the study to achieve the 

desired result. The answer to this question should result in a mobile-based 

system that is capable of accurately and efficiently counting and measuring 
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abalone in real-time, where the system is both location-independent and 

network-independent.  

 

Therefore, the primary question below encapsulates the core research concepts 

that are being investigated and it will ultimately be used to evaluate the 

effectiveness of the proposed instrument addressing the deficiencies identified 

in current literature.  

 

How can an integration of object detection and 

augmented reality techniques be used for real-time, 

network independent abalone counting and size 

measurement using a mobile device? 

 

This focus question was then broken into several sub-questions. The first of 

these questions will be used to provide a guideline for the related techniques and 

methods for measuring abalone and other aquatic life, with a particular emphasis 

on real-time. Using this question as a guide should ideally result in a mobile-

based instrument capable of capturing object measurement data in real-time. An 

ideal implementation in the context of abalone measuring would mean enabling 

users to capture variable sizes of objects efficiently, independent of location, and 

network connectivity. 

 

1 – What object measuring techniques can measure 

Abalone accurately in real-time? 

 

The second research question then relates to the other form of real-time data 

capturing to be used, object counting. Successfully answering this question 

should result in a chosen mobile-based DL technique capable of recognising 

multiple abalone within a single image. 
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2 – Which object detection techniques can accurately 

recognise and count multiple Abalone in real-time? 

 

Thirdly, this question will then focus on the integration and congregation of both 

previous techniques into one unified system. Success in this sense will mean that 

both object measuring and counting can occur in real-time using a mobile 

device. 

 

3 – How can object measuring and recognition be 

combined to provide a real-time user experience for 

Abalone monitoring on a mobile device? 

 

1.3 Relevance and Significance 

The current techniques for counting and measuring abalone use a manual or 

approximation method to track population numbers and growth rates [4, 6]. The 

inherent issues with using these techniques can be dramatically improved in 

terms of accuracy, speed, and reliability using object recognition and AR on a 

mobile device. A well-designed system to count and measure the amount of 

abalone in commercial farming, in real time, would decrease the number of 

human mistakes and increase the efficiency, and accuracy, of stock taking. As a 

result, farmers would be to re-distribute human resources to other areas more 

effectively and reallocate funding to further improve their abalone growth 

monitoring process. 

 

In addition, the proposed features of location and network independency will 

extend the range of uses to include not only onshore farms, but also offshore-

based abalone farms. Daily inspections of abalone can thus be conducted more 

accurately, and relevant population data can be made more widely available. 

Such data would enable farmers to track their population and analyse growth 

data to better detect the presence of disease, high morbidity, or unusual patterns, 
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thereby increasing the effectiveness of early preventative measures. Through the 

accompaniment of a mobile-based automated system with the existing 

monitoring procedures, more accurate and efficient stock taking will be made 

possible, and thus, farming procedures can be optimised to maximise profits. 

 

However, there is a notable gap in the current literature surrounding the 

automation of counting and measuring abalone, yet the methods which produce 

high magnitudes of error are currently in use, which demonstrates the need for 

more research in this area. In addition, not enough research has been done on 

real-time measuring and object detection on mobile devices that is non-network 

reliant. Traditionally, in aquaculture and non-aquacultural areas, the use of 

complex setups and server or cloud-based for visual inspection tasks is used. 

Often these techniques require the use of networks and hard-wired computers to 

transfer images to a hosted system, which create unnecessary overhead and are 

often complex to setup and maintain. Chapter 2 of this thesis will further 

highlight several of the main approaches observed in the literature and outline 

their inherent issues when applied to the problem domain of abalone.  

 

1.4 Research Aims 

The aims of this project are multi fold. The first aim is to determine the most 

suitable vision-based techniques for counting abalone on mobile in real time 

without the need for a network connection. The chosen techniques will need to 

be able to detect abalone throughout its various life stages; be efficient and 

portable such that it can be used in real time on a mobile device and be fully 

self-contained to where it requires no communication with any external 

networks so that it can be used anywhere. It is further aimed that the most 

suitable augmented reality method for measuring abalone will be determined 

based on a similar set of metrics, with the added goal of being performant in a 

variety of environmental and lightning conditions.  
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Experiments will then be conducted to identify if the proposed solution improves 

the accuracy and speed of both the counting and measuring of abalone when 

compared to existing techniques. As a secondary aim, this research should 

establish, through investigation and interpretation of the experimental results, a 

foundational baseline from which further research into more robust and 

improved techniques can be conducted.  

 

Thus, it is hypothesised that a selective integration of AR combined with object 

recognition will result in a real-time, network independent Android mobile 

application suitable for counting and measuring abalone. 

 

1.5 Thesis Structure 

The remainder of the thesis is structured as follows: Chapter 2 covers the 

relevant literature for the key concepts to be used in this research project and 

reviews the current approaches used to count and measure objects both in and 

outside of aquaculture. Chapter 3 details the framework design used and broadly 

discusses technical concepts. Chapter 4 describes how and why the abalone 

counting and measuring tool was implemented the way it was, from a 

development standpoint. Chapter 5 discusses the experimental methodologies 

used for testing the validity of counting both mature and juvenile abalone. 

Chapter 6 covers the experiments used for testing the measuring tool on several 

objects. Finally, Chapter 7 summarises the results and discusses their 

implications as well as the limitations of the proposed solution and how it could 

be improved on in future research. 
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Chapter 2 

 

Related Works 

 

2.1 Abalone Farming 

As it has been briefly discussed already, the current state of abalone farming, 

and by large, the aquacultural industry have been limited to manual detection, 

counting and grading systems. For example, in most fisheries, where these 

manual forms of stock taking are highly prevalent, such tasks can take multiple 

people several hours to individually screen tens of thousands of fishes, with no 

definite assurance that their numbers are accurate or true [30]. In the case of 

abalone, manual inspection for counting and measuring is typically performed 

by hand by trained staff at both the juvenile and mature stages. Here, often any 

mode of disturbance decreases growth rates or can even cause the abalone to die 

if enough damage to the soft underlying body is done [5].  

 

At the nursery stages, the juvenile abalone are even more fragile and susceptible 

to death if handled incorrectly. For farmers to achieve high nursery plate yield 

rates, trained staff must follow a strict procedure for any out-of-water counting, 

measuring or health inspections. When they are at this very delicate stage, they 

cannot be exposed to air for more than 1 minute at any one time, and only then, 

when air temperatures are between 10-25°C [25]. Such conditions require 

workers to be careful and precise, which can significantly increase the time taken 

to count and measure abalone stock. As abalone only grow, on average, only 

two to three centimetres annually, it is imperative to see a return on investment 
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[3]. Thus, ensuring their survival and constant growth at their mature stages is 

also highly important.  

 

Currently, matured grow-out and weaner stage abalone are counted and weighed 

also using manual methods [4, 5, 6]. At these stages, it is less likely that they are 

as delicate as they were as juveniles, however, monitoring stock growth statistics 

are still highly important for identifying rapid rises and drops in population. In 

addition, close monitoring of the population can also assist farms in determining 

optimal selling points and can help assess the performance of different feeding 

strategies. However, due to the current methods of counting and measuring 

stock, there are still issues with accuracy, scalability and variability which only 

become more apparent as operation sizes expand, and stock volume increases.  

 

2.2 Object Detection and Augmented Reality 

2.2.1 Deep Learning and Object Detection 

DL is a function of Artificial Intelligence (AI) which attempts to mimic the 

human brain, whereby models are shown large amounts of training data (such 

as images). Through repeated exposure, DL algorithms can learn patterns and 

extracting features to achieve a desired output. These goals can range from 

detecting objects to recognizing speech patterns. Object recognition, for 

example, is fundamentally a visual detection problem that is made possible using 

DL. The term object recognition is a generalization that is used to describe the 

marriage of both image classification and object localization [22].  

 

Image classification relates to a process of prediction, whereby a deep neural 

network is trained to recognize and extract the characteristics of an object within 

a labelled example image using repeated exposure, so that can be used to assign 

a label to a previously unseen example. Object localization is the process used 

to locate the presence of objects within an image and indicate their position using 

bounding boxes. Historically, these types of mechanisms are computationally 
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demanding and, in the past, have required powerful hardware to be able to run 

them effectively which limited the algorithms to pre-configured or cloud-based 

systems [26]. However, the feasibility of running DL models using mobile 

phones has increased multifold. This, in turn, has led to an advance in efficient 

mobile based DL frameworks such as Google’s TensorFlow Lite and 

Facebook’s PyTorch. These systems have been designed to harness the limited 

power of mobile devices to allow for the real-time extraction and identification 

of objects within an image [32, 33]. 

 

At the cost of some general loss in accuracy due to limitations of mobile-based 

hardware, the benefits of on-device processing are multi-faceted when compared 

to traditional systems. The most compelling reason for using on-board resources 

is that overhead from server-client communication is greatly reduced which 

conjointly offsets or negates any hosting costs and connection reliability issues 

[9]. Furthermore, tasks which make use of local resources typically result in 

faster response times and increased information security because it is never 

sending or receiving information from a network. As such, applications that use 

this processing technique eliminate the need for network connectivity, meaning 

that they are ideal for DL tasks which take place in regions with unpredictable 

network connections, such as offshore abalone farms. 

 

2.2.2 Augmented Reality 

Fundamentally, AR is a virtual experience whereby real-time, interactable 

objects such as three-dimensional (3D) models, text and images are 

superimposed onto the physical world and are made viewable through a digital 

medium, such as a smartphone or tablet. Such technology can be useful for 

projecting virtual content and manipulating it within a 3D environment, in real-

time.  

 

Objects that in an AR scene are strictly digital, and as such, the boundaries of 

the physical reality can be extended through technology in such a way that it 
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perceptually enriches a user’s actual environment. To fully understand AR, it is 

important to distinguish where the boundaries between physical reality ends, 

augmentation begins, and where the line is drawn for virtual reality (VR). To 

define such boundaries, we use the reality-virtuality continuum, as seen in 

Figure 2 below. 

 

 

Figure 2 – The reality-virtuality continuum [35] 

 

Full VR and AR greatly differ from each other. Rather than enhancing the user’s 

environment with digital objects as with AR, VR completely immerses the user 

in a fully virtual environment without any view of the real world [36]. This 

distinction, though slight, greatly defines the scope and limitations of each 

concept. Thus, AR is not restricted to the boundaries of wearable technology 

such as head mounted displays, which take up the entirety of the sense of sight 

[35].  

 

With the ubiquity of mobile devices in modern society, AR has seen an increase 

in usage in mobile applications. We need only look back to 2016 with the recent 

example of Pokémon GO app produced by Niantic, which quickly became the 

top mobile game in the US at the time; to see the potential that AR-enabled 

applications can achieve [24]. However, Pokémon GO is only one case which 

illustrates the potential of AR. The technology itself has already been 

implemented in a variety of industries ranging from healthcare to tourism [24, 

27, 28, 37]. 
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AR and DL have mainly been applied to areas outside of aquaculture, namely in 

areas of medicine, on-site teaching, and education, with relatively high success. 

One such paper where these techniques have been successfully used is in a 2018 

study that focuses on using AR to create visual aids through display for early 

childhood training. Here, they use CNN based image classification to detect 

markers, which are the letters of the alphabet, and use AR to motion track 

relevant objects to the markers [27]. This approach has a strong focus on using 

marker-based AR, with an integration of deep learning image classification as 

well. However, the design is limited to only very visually distinct alphabetical 

letters, it requires camera calibration for motion tracking, and it is not made for 

mobile devices.  

 

For approaches which employ the use a mobile device, there have been medical-

based tools that use image classification and AR to detect and measure medical 

bedsores such as a study proposed in 2020 [7]. To measure these physical 

ailments, researchers chose to use a web hosted server which classifies the 

bedsore image using PyTorch and then they use OpenCV to measure bedsore 

(marked out beforehand) which is then shown graphically with Easy AR once 

processed through the measurement tool [28]. This article is useful because it 

combines both AR and DL together, for the detection and measurement of 

bedsores within an image. However, the authors make use of web services to 

achieve this which creates unnecessary overhead, is overly dependent on user 

interaction for the initial measurement line drawing, and the solution is not in 

real-time.  

 

2.3 Object Counting and Measuring in 

Aquaculture 

Previously proposed methods of counting and measuring abalone typically 

involved data capturing either manually or using commercially available optical 

detection systems and using approximation techniques to estimate farm 
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populations. More recently however, there has been an increase in popularity in 

applying machine vision systems to the domain of aquaculture. The four main 

groups of approaches for counting and measuring aquatic products observed 

throughout the literature are sensor-based methods, acoustic based methods, 

video analysis methods and image processing methods [12]. These techniques 

have all demonstrated high potential across a multitude of tasks for other aquatic 

products such as fish, oysters, scallop, and prawns but is notably missing in 

abalone aquaculture. Figure 3 below displays the fundamental elements 

typically found in an aquacultural machine vision system (MVS). 

 

Figure 3 – Elements of a Typical Machine Vision System (MVS) [4] 

 

2.3.1 Sensor-based Methods 

Sensor-based methods are approaches used by researchers that typically employ 

the use of electronic and mechanical devices including optical sensors, infra-red 

and electrode resistivity for counting aquatic life. For abalone, approaches based 

on these types of methods have been previously investigated, such as in a study 

conducted in 2015 for the mechanical grading and weight estimation of market-

ready samples [31]. Able to achieve a weight estimation accuracy to within 8g, 

the proposed capturing system here, as pictured in Figure 4, uses a complex, rail-

guided, LED infrared backlit data collection method, where images are taken 

and then transmitted over an Ethernet network to a nearby storage device for 

analysis. Such a system has several drawbacks, the first of which is that it is 
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limited to adult-sized abalone only, as juveniles would be too fragile for such a 

system. Secondly, an implementation like this has multiple points of failure due 

to its complex setup and reliance on network connectivity to the attached 

computer. This also indicates that special care and expense is required for system 

maintenance.  

 

 

Figure 4 – Features of a sensor-based abalone measurement method as 

detailed in [31] 

 

For an anatomically similar creature to abalone such as the oyster, sensor-based 

systems have also been successfully applied such as in study conducted where 

the method proposed could sort them into three size categories with an accuracy 

of 88% in quick succession using a fixed camera and conveyer-based system 

[13]. A similar method named “The CatchMeter” was proposed in 2006, which 

rather than being applied within a controlled environment, was put onboard a 

vessel for automatic catch logging, and thus subject to oceanic conditions. In 

their approach, they too used a mechanical conveyer-camera setup interfaced to 

a nearby computer for the automatic sorting of fish which achieved a 99.8% 

sorting reliability for seven species of fish and standard deviation of measuring 

equal to 1.2mm [14]. While this solution can perform real-time measuring and 

counting, it has the limitations of a complex setup including lightbox and feeder 
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components to ensure that the fish are in the correct orientation. In addition, it is 

also vessel-bound meaning that it is limited in the scope of application.  

 

In another sensor-based approach, researchers used an infra-red counter-based 

mesh turbine system based within a silver perch aquaculture tank [15]. The 

system would count and measure fish that pass through the unit and break the 

infra-red beams. One of the major drawbacks of this approach, however, is that 

it would detect multiple fish that passed through the mesh at once, as a single 

instance. The clear limitations this, and by large, sensor-based approaches have, 

is that they are often immobile and expensive, requiring specialist-made 

equipment and constant network connectivity to a nearby computer to function. 

Such approaches not only require the solution to be pre-arranged to function, but 

it also may have performance issues due to bottlenecks from back-and-forth 

communication between the system and the client. 

 

2.3.2 Acoustic-based Methods 

Acoustic-based methods are approaches that use sound waves to overcome 

issues with underwater image capturing such as in murky conditions and low 

light levels. Included within the acoustic based methods are techniques that use 

imaging sonar and hydroacoustic pulses to count and track underwater life. For 

approaches which use sonar there are studies where the researchers have used a 

multi-beam mobile sailing robot to automatically estimate fish density in open 

waters [16]. Here, the tool was designed with cost-effectiveness in mind, thus, a 

cheap sonar module was mounted onto a sailing robot and data was archived 

locally to a maximum of 22 Gigabytes (GB), with the option of wireless 

transmission. While this method was efficient at counting and measuring aquatic 

life in areas of uncertain water conditions with a measurement error of less than 

8%, it still has some limiting factors. The solution is still relatively expensive to 

produce at around 2500 Euros per unit, and the images captured are not available 

in real-time as it must be either stored locally and retrieved manually or 
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transferred wirelessly to a computer within a range of 1 kilometre, and then 

analysed to determine fish counts.   

 

Acoustical techniques have also been used for monitoring fish density, 

behaviour, and growth rate within fish tanks such as in a study conducted in 

2005 [38]. Using remotely-activatable acoustical emitters and receivers to 

monitor fish within a cylindrical tank, researchers were able to harmlessly record 

the reverberation time series in the tank with swimming fish to estimate their 

density and growth rates, without the need for human intervention. However, 

the system was limited in that measurements are only taken every 10 minutes at 

a time, thus meaning that results are not in real-time and sudden changes in 

population or behaviour would not be discovered until results were collated and 

analysed. The initial setup of this system under different conditions must also 

first be verified to ensure that results are reliable prior to use, meaning that the 

system lacks efficient adaptability.  

 

Another method is the usage of hydroacoustic estimation, such as a study done 

on non-invasive fish counting methods via echo sounding [12, 16]. However, 

such solutions also are generally expensive and are required to be affixed to a 

floatation vessel to operate which limits their overall usefulness. In addition, 

they are unable to recognize small and dense, overlapping objects because the 

acoustic systems rely on the echo sound pulse reflected from objects with 

different densities, and are not precise enough to distinguish small schools of 

fish. 

 

2.3.3 Video-based Analysis Methods 

For video-based analysis methods, typically multiple cameras, and other sensors 

are employed for data capturing, and are often restricted to controlled 

environments. These types of systems are good for establishing continuity 

between image frames to establish aquatic creature trajectory and behavioural 

analysis. In two studies, video recording sequences are captured from 
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aquaculture tanks using multi-camera systems for fish behaviour analysis [18, 

19]. These methods are susceptible to similar limitations as those identified in 

sensor-based methods. However, they also possess the added factors in that they 

generally do not include the integration of AR, unlike many similar methods 

seen outside of aquaculture. Furthermore, they are often strictly limited to client-

based systems which demand constant network connectivity. 

 

Video-based techniques have also been applied for the real-time detection and 

counting fish in low quality underwater sequences. For a given underwater 

video, the system proposed in [39] can achieve an accuracy of 85% using a 

combination of blob shapes and histograms for tracking fish within a sequence. 

However, the method suffers from continuity issues relating to fish tracking 

between video frames, as it is unable to reliably distinguish unique individuals 

from low frame rate recordings. In addition, the system is also restricted to 

underwater sequences that feature low creature density.  

 

Another example of this can be observed in a study done in 2020 which proposes 

a network-enabled crab detection system implemented on a configured 

microcomputer aboard a water floatation device [17]. Furthermore, these types 

of systems are generally not real-time, and videos are recorded for transmission 

to a web-based service for later analysis. This also means that video footage is 

required to be retained, and thus, server hosting costs and storage considerations 

become additional limiting factors to these types of approaches. 
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Figure 5 – Crab video-analysis based detection method which employs the 

use of multiple cameras [17] 

 

2.3.4 Embedded Image Processing Methods 

Finally, for embedded image processing, typically these methods are non-

invasive, location-independent, and highly efficient because they have power 

and computation restrictions. For one such recent method applied to the task of 

scallop detection, researchers used image processing methods embedded in an 

autonomous underwater vehicle (AUV) system [20]. The system they used was 

equipped with sonar obstacle avoidance, an antenna, a propulsion system, and a 

downwards-facing camera which sequentially captured images for later 

counting analysis using a convolutional neural network based on the YOLOv2 

architecture. This method has the reoccurring issue of the need to offset 

processing through data transmission over a network, meaning that it is not in 

real-time. 

 

Further methods such as one proposed in 2018 [40], focus on using low-cost 

image processing methods embedded on a Raspberry Bi 2 for the counting of 

fish with an average accuracy equal to 96.64%. Their approach is both real-time, 

low cost and easily portable. However, in a real-life environment, the method 

requires a specialised setup where fish are fed through a two-tank interconnected 

system which force fish to travel from one tank, past the counting system into a 
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collection tank. Alternatively, a multi-arrangement including multiple cameras 

would need to be disbursed strategically over a tank to ensure all areas are 

covered before their counting result is sent to a centralised system via a wired or 

wireless connection. 

 

Another observation of embedded image processing from the literature can be 

seen in a study on lobster grading using convolutional neural networks [23]. In 

their methodology, they can achieve positive results using a mobile-based 

approach when attempting the task of determining a lobster’s weight, carapace 

size and overall grade. Here, the researchers employ the use of a client-server 

model where photos taken with the application are sent to a server for analysis 

before results are returned to the user. This further confirms that this study, and 

similar embedded systems are typically network dependent and not real-time.   

 

2.4 Summary of Literature Gap 

The deficiencies in the literature are mainly that the areas of DL and AR have 

not been applied in the real-time measuring and counting of abalone, leaving a 

considerable gap. The most prevalent limitations of related approaches are that 

they are network-reliant and/or not real-time, requiring constant connectivity for 

the system to work. For a system such as the previously mentioned mechanical 

method proposed in 2006, they require a direct interface from a computer to the 

vision system via an Ethernet cable link [14]. Such a solution not only requires 

the solution to be pre-arranged to function like many other approaches [13, 14, 

15, 16], but it also creates unnecessary overhead from back-and-forth 

communication between the system and the client.  

 

Other approaches that incorporate the use of video-analysis suffer from network-

reliance as the footage is transferred from the capture system to the web-hosted 

tool for processing, resulting in latency and susceptibility to poor signal 

conditions in remote areas [18, 19]. In addition, these systems also suffer from 

complex, often immovable setups which are more susceptible to error due to the 
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increase in points of failure. Such approaches would not be as suitable for 

abalone, as the smallest changes in population or growth patterns could be 

potentially costly for farmers due to the slow growing rates. As summarised 

from reviewing the advantages and disadvantages of the approaches as per Table 

1 below, it can be deduced from the identified thematic groups that none of the 

existing aquacultural approaches are entirely suitable for the given task. In 

addition, few of the review approaches are transferrable for counting and 

measuring abalone in real-time, where the approach uses a mobile device, and 

is both network and location independent. 

 

Approach Strengths Weaknesses 

Sensor-based Fast response, capable 

of producing real-time 

results, and easy to 

understand  

Often requires complex 

setups and special 

equipment, generally 

required to be 

networked for data 

transmission and 

analysis 

Acoustic-based Non-invasive, good for 

capturing underwater 

images in unclear 

conditions  

Difficulties detecting 

smaller objects in high 

densities, sometimes 

they need to be affixed 

to vessels and results 

are generally not in 

real-time 

Video-Analysis based Good for tracking 

general behaviours and 

establishing trajectories 

of individual creatures 

in low-density 

situations 

Issues regarding video 

storage and 

transference over a 

network, often unable 

to establish reliable 

continuity between 
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frames for accurate 

counting 

Embedded Image 

Processing 

Often portable and non-

invasive, typically 

highly power efficient 

due to hardware 

restrictions 

Limited by hardware 

for continuous 

counting, sometimes 

requires network 

connectivity to transfer 

locally stored data 

Table 1 – Strengths and Weakness of Current Aquaculture Counting and 

Measuring Methods 

 

Thus, the research conducted in this thesis aims to determine, through 

experimental research, the effectiveness of mobile-based AR and object 

detection for counting and measuring abalone in both their juvenile and grow 

out/weaner stages. Through this, the system will overcome issues of immobility 

from identified methods in areas such as video-based analysis and sensor-based 

methods which often require special components and equipment configurations 

for operation. The mobile aspect of the approach will be more desirable for 

reasons of convenience and speed, where real-time results can be made available 

as opposed to being stored for ensuing analysis. Moreover, the proposed 

instrument will be operable in network independent conditions unlike many 

other approaches, such that it can be used in edge cases where connections are 

unreliable or slow.   
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Chapter 3  

 

Framework of Mobile Abalone 

Measuring and Detection 

 

 

 

Figure 6 – Conceptual Framework for Counting and Measuring Abalone  

 

The system designed for counting and measuring abalone in real-time, without 

a network connection has been defined as beginning with the on-device camera, 
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as image capturing is at the core of the instrument. With image capturing 

handled, it is up to the decision of the user and the nature of the task they are 

trying to complete. In the context of this project, the decision must occur at the 

start of usage, as simultaneous operation was outside of the project time and 

resource scope. As outlined in Figure 6, the proposed framework consists of two 

main conceptual branches contained within a single android application, with no 

external connections required during its execution or operation.  

 

For counting, images are taken from the camera, and morphed into a usable 

416x416 size ready for input into the embedded, TensorFlow Lite model pre-

train on custom data using the process of transfer learning. Two TensorFlow 

Lite models were trained on two sets of training data, one for nursery abalone 

and the other for weaner/grow-out stage abalone. The output of these models – 

once trained – was a self-contained .tflite file and an associated class labels text 

file, both of which were transferred to the local storage on the mobile device and 

embedded such that it could be used by the mobile application. Images captured 

by the system would then be passed through these models and the output results, 

including the prediction scores, object locational coordinates within the image 

and number of objects would be returned. From here, the bounding box 

coordinates are stretched to match the original image size and are drawn on-

screen to indicate the position of the object along with the accuracy from 

prediction scores, class of object, and overall number of objects within the 

image. 

 

In the second component, for the task of measuring objects, Google’s ARCore 

was used, and it requires several steps of user interaction in conjunction with 

data made available from on-device sensors including the camera, inertial 

measurement unit (IMU), accelerometer and gyroscope. Initially a plane must 

be established within the operating user’s environment which is achieved by 

using the sensory data available to locate and track feature points at areas of 

visual distinction. Using clusters of feature points, ARCore can then overlay and 
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establish the boundaries of a two-dimensional (2D) plane which enable for the 

accurate positioning of anchor points and other digital objects relative to real 

surfaces, but within the augmented environment. With a plane established, the 

object to be measured must be situated close to it, and using the on-screen 

positional markers, users simply need to align the dots with either side of the 

object that they are trying to measure.  

 

Once aligned, a user can request to measure the distance using a single button 

click. ARCore then takes the pixel axis coordinates from the 2D screen and casts 

a straight line – or ray – from both on-screen marker points and sends them into 

the world space within the camera’s view. If either of these rays intersect the 

established plane, an anchor point is created at the point of intersection. From 

this, we can attach viewable 3D models and render them to the screen as visual 

indicators of where the anchor points were placed. It is then a matter of 

calculating the distance between the two established anchor points using the 

Euclidean Distance formula, and then relaying that to the user.  

 

Both component functionalities allow for the user of the application to rapidly 

measure singular abalone or larger objects at once or count multiple abalone in 

real time. Such a design means that users are not forced to use additional devices 

or change the main screen of the application as both tasks can be easily swapped 

to. The ease of resetting the application, and additional advantage of real-time 

enabled features supports the operator in making one or more measurements 

without the need to take extensive time to reset the observation. In both cases, 

the focal objects do not need to be manually handled except to lie the creature 

flat, and it allows operators to easily collect objective data for growth inspections 

and population monitoring. 
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Chapter 4  

 

Implementation 

 

 
Figure 7 – Overall Architecture for the AR Object Detection-based App 

Implementation 

 

The framework model described in the previous section has been implemented 

as an Android AR and object detection-based application, the architecture of 

which is visualised above in Figure 7. The figure shows that ARCore and 

TensorFlow Lite are the chosen technologies that will be combined and 
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constructed using local storage, sensory information and externally created 

TensorFlow Lite models re-trained using transfer learning. TensorFlow Lite is 

shown to provide the local counting functionality using object detection, and 

likewise, ARCore is shown to facilitate measuring using AR. The layout of the 

diagram shows how the user interacts with the system, and how each component 

with the architecture relates and ultimately how abalone measuring, and 

counting is achieved. 

  

4.1 Augmented Reality on Mobile 

4.1.1 Augmented Reality Mobile Library 

The primary evaluation step in the AR toolkit selection process is to define the 

differences between the two primary categories of AR applications, which are 

either marker-based or location-based. The main distinction between the two 

types is tied on how positional information is gathered from the virtual scene, 

and how it is subsequently used to superimpose digital objects. Marker-based 

AR is when the system places digital markers into a scene at visually distinct 

points such as object edges, areas of contrasting colours, or on real objects using 

in-built recognition techniques. Markers act as virtual anchors, allowing for 

digital objects to be positioned and tracked relative to them. This mechanism 

allows a system to significantly simplify and streamline the positioning of virtual 

objects by ‘pinning’ them to the real environment. 

 

Furthermore, this technique reduces the computational complexity required 

during position and orientation calculations, making it ideal for mobile devices 

due to their limited available resources [41]. Comparatively, location-based AR 

allows users to position objects anywhere within the range of the camera view 

by using a combination of geographical and smartphone sensory information 

[43]. Importantly, this means that location-based AR is well suited for 

applications that use predefined points of interest (POIs) or geographical 

information to display vicinity relevant content. For example, when walking 
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around a major city with its numerous tourist attractions, a location-based 

mobile app will be able to detect these areas and provide insightful information 

[42]. 

 

4.1.2 Evaluation 

For the purposes of an object detection and length measurement AR application 

however, it is likely that measurements will need to be taken dynamically, that 

is, users of the application should not be required to go to a specific geographic 

location to operate it as with location-based AR. Thus, the selection of AR SDKs 

will be reduced to only those which offer marker-based functionality. In 

addition, a set of criteria was developed to enable the suitability of each SDK to 

be related to the necessary functions of the app. As seen below in Table 2, a 

cross comparison of the top six AR SDKs was developed from the respective 

developer documentation and examined for their supported platforms, primary 

differentiating features, and pricing options. 

SDK Supported 

Platforms 

Key Features Pricing 

Vuforia • iOS 

• Android 

• Universal 

Windows 

Platform  

• Unity 

• Cylinder 

tracking 

capability  

• Customisable 

markers 

• Basic version 

($42/mo) 

• Basic Cloud 

version 

($99/mo) 

ARToolKitX • iOS 

• Android  

• Linux 

• Windows 

• Mac OS 

• Smart Glasses 

• Smart glasses 

integration 

• Automatic 

camera 

calibration 

 

Free (Open 

Source) 

Google ARCore • Android 8.1 or 

later 

• Environmental 

and depth 

Free 
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• iOS 9.0 or 

later 

• Unity 

• Unreal 

understanding 

for motion 

tracking 

• Light 

estimation 

Apple ARKit • iPhone 6s and 

higher 

• iPad Pro 

• iPad Air (3rd 

gen) 

• iPad (5th gen+) 

• iPad mini (5th 

gen+) 

• iPod touch (7th 

gen) 

• People 

occlusion 

• Multiple face 

tracking 

 

Free 

MAXST • Android 

• iOS 

• Mac OS 

• Windows 

• Unity 

• QR and 

barcode reader 

• Cloud 

recognizer 

 

• Free trial 

• One-time fee 

($699) 

• Subscription 

($50/mo) 

 

Wikitude • Android 

• iOS 

• Windows 

• Smart Glasses 

 

• Geo AR 

• Multiple 

trackers 

• Multiple 

image targets 

• One-time fee 

(€2490) 

• Subscription 

(€2990/yr) 

 

Table 2 – Comparison of the Top AR SDKs. [45, 46, 47, 48, 49, 50]. 

 

From Table 2, the primary attributes of the supported platforms, differentiating 

features and pricing were evaluated for each SDK. The available platforms that 

each SDK supports is vital to the decision-making process because it directly 

relates to the flexibility of devices which the development of the app will be 

constrained to. As seen from the table, the majority the SDKs are supported on 
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most platforms, apart from ARKit which is only available for modern Apple 

products. Interestingly, other options like MAXST and ARToolKitX also have 

the added advantage of being available on computers and other smart wearable 

devices. However, with the focus being from a mobile device standpoint, all 

apart from ARKit are equally adaptable, being available both on iOS and 

Android. 

 

Key differentiating features is another criterion which further aids in the 

selective process. As the primary functions of the proposed AR app will be 

object measuring and detection, a marker-based SDK will be used since the 

function of the app will likely not rely on or use geographical information. 

Several key features from both Wikitude and Vuforia are quite niche and 

superfluous for the task at hand, such as Vuforia’s cylindrical tracking feature. 

These types of functions would be much better suited for enterprise or 

commercial applications, which is indicative through the pricing options 

targeted towards those types of customers. Other key features such as ARCore’s 

environmental understanding and ARToolKitX’s automatic camera calibration, 

however, almost certainly align with the proposed AR app and will assist with 

the development process.  

 

Pricing was the final key consideration, and due to the nature of the project, a 

free and readily available SDK was necessary, as it not only implies that there 

will be more documentation and previous examples on it, but in general there is 

more knowledge surrounding it because more people have access to it, meaning 

development times can be drastically reduced.   

 

Thus, from the cross examination of the top SDKs, ARCore and ARToolKitX 

consistently meet the requirements set out in the criteria. Both toolkits are free 

and widely used already, are available on both major mobile platforms, and 

possess useful features. However, upon further inspection, ARCore has the 

advantage over ARToolKitX due to the plethora of pre-existing example 
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applications, and complete sets of developer guides constructed by Google’s 

development team which will assist in lowering development times. In addition, 

the inbuilt features such as environmental awareness and depth understanding 

will also be greatly advantageous to assist with AR integration.   

 

4.1.3 Development 

To implement an Android application using the ARCore framework, the project 

requires dependencies to be installed, including the SceneForm SDK. Once 

enabled, the first stage is to check the user’s device for AR ‘required’ availability 

upon start-up, meaning that their android SDK must be at minimum version 24 

(Android 7.0 (Nougat)) or later1. If it meets the requirements, the user is then 

prompted to allow the app to access the device’s camera before the ARCore 

session is established. When permissions have been granted to access to the 

camera, the remaining operations to implement an object measuring application 

can defined in a series of logical steps as seen below in Figure 8. 

 
1 Minimum requirement enforced for AR to function 

https://developers.google.com/ar/develop/java/enable-arcore 
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Figure 8 – ARCore Implementation Flowchart 

 

Once camera permission is provided from the user after they launch the app, the 

initialization of the virtual scene is handled through an inflated SceneForm 

fragment, whereby any 3D assets are rendered within the camera’s view. At this 

stage, the fragment also handles camera initialization and permission handling, 

and once successful, a shared camera feed from the on-board camera interlinked 

with ARCore. 

 

After a camera uplink has been established, the next stage is to find a plane 

within the environment using feature points. A user will do this by moving their 

device throughout their environment, on any flat surfaces. In most cases, the 
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more varied the surface is, the easier it is for ARCore to establish a plane. This 

is due to its innate environmental understanding feature-set, whereby contrasts 

in texture, colour and shape enable ARCore to find feature points easier.  

 

Once a plane has been found within the environment, the user can then request 

to measure the object, and through the press of a button, ARCore will project a 

ray from that coordinate point on the two-dimensional screen into the three-

dimensional virtual environment. If it is found that it intersects the plane, or 

anchor, data about the objects found is made available, allowing for user 

interaction to be managed. Figure 9 below demonstrates how a plane might be 

established from the associated feature points. 

 

Figure 9 – Establishing a Plane Using ARCore (Image is taken within a 

virtual environment) 

An anchor is created at the point of intersection on an established plane, after 

the initial input from the user’s mobile device’s screen. Anchors define a three-

dimensional pose in world space, that is then pinned in the context of the 

trackable, in this case, the plane. This means that the anchor point itself can be 
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properly tracked during motion, irrespective of where the object is placed in 

world space2. 

 

Once an anchor is established, a Renderable marker, such as a three-

dimensional (3D) sphere, is then programmatically attached to the anchor to 

visually denote the anchor placement. From there, ARCore’s SceneForm API 

handles interaction-based events that rely on further hit tests when using an 

object type of TransformableNode. These nodes allow the world position of 

anchors to be moved within the virtual environment if it remains on an 

established plane. Once two anchor points in the environment have been 

established, as seen in Figure 10 below, the distance between the spheres can 

be measured using the Euclidean distance formula, where   

 

 

 

 

 
2 Working with Google ARCore Anchors as per: 

https://developers.google.com/ar/develop/developer-guides/anchors 
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Figure 10 – 3D Marker Placement for Measuring Objects 

 

Here, distance will a measurement value in centimetres which equates to the 

length of the true straight line between the world position coordinates of the 

first anchor point x, y and z, and x1, y1, and z1 respectively and similarly for 

the second point. The resulting number is then returned and can be parsed to 

any layout object which uses string text. 

 

4.1.4 Validation Metrics 

For validating our approach, the ground truth values, to be measured by hand 

with a ruler or measuring tape, will be compared with both the farmer’s 

technique of estimating, and the recorded measurements taken using the 

proposed instrument. In addition, the time taken to measure a series of object by 

hand, using estimation, and using the measuring instrument will also be 

compared. Through this, we will be able to verify if our methods outperform 

traditional abalone measurement approaches in terms of accuracy and speed and 

confirm if the degree of error is reduced overall. These results will then be 

congregated and critically compared and benchmarked against existing 

approaches to demonstrate the degree of improvement it provides. 

4.2 Deep Learning on Mobile 

4.2.1 Deep Learning Mobile Library 

Many larger technology companies such as Google and Facebook have 

developed frameworks for deep learning applications on mobile devices. 

Selecting the most suitable SDK based on requirements is a vital component in 

determining the success of an application, because it directly affects the 

development times, and can alter the performance of the final product. 

TensorFlow Lite and PyTorch are two widely used, publicly available machine 

learning frameworks that support deep neural network models on mobile devices 

such as image classification and object detection [32, 33]. Both are in wide scale 

production use and have Application Programming Interfaces (APIs) written in 
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the most popular programming languages, meaning they can be adapted into not 

only an Android application, but other operating environments as well. 

 

TensorFlow Lite is an open-source machine learning framework developed by 

the Google Brain Team which is designed to streamline the process of 

incorporating AI into mobile applications. Through the design of an intuitive 

and high-level API, many of the underlying machine learning parameters and 

software details are abstracted [9]. This simplification not only results in quicker 

learning and deployment speeds from a development standpoint, but it also 

means that more comprehensive documentation guides and example GitHub 

repositories are available to showcase its range of features. Furthermore, Google 

uses TensorFlow in products such as Google Translate and Gmail, which 

are widely used today. This incorporation indicates the use of TensorFlow lite 

should also have good synergy with Google’s Augmented Reality library, 

ARCore, which suggests that it will be a favourable pair for the project. 

 

PyTorch on the other hand, is a deep learning library developed by Facebook’s 

AI Research Lab (FAIR). Compared to TensorFlow, the supporting guides, 

documentation, and direct examples offered by PyTorch are fewer. This is 

because the primary purpose of the library is catered towards accelerated 

research prototyping, making it a popular choice among academic researchers 

[33]. It provides APIs that can cover most of the common pre-processing and 

integration tasks, but one of its major downfalls is that it is still in a beta stage, 

meaning documentation is rapidly changing and becomes equally obsolete as the 

library is continually updated. 

 

4.2.2 Evaluation 

For the purposes of an object detection and measurement Android application, 

both PyTorch and TensorFlow Lite, a more extensive investigation must be 

performed to determine their suitability to the given task. To do so, four major 

criteria have been selected: 1) What platforms is the SDK available on, 2) What 
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language APIs does the SDK support, 3) What are the main features of each 

SDK, and 4) Is it free to use? As seen below in Table 3 below, a cross-

examination of both SDKs was developed from the documentation. 

 

 TensorFlow Lite PyTorch 

Supported 

Platforms 

iOS, Android iOS, Android, Linux, Mac, 

Windows 

Supported 

Languages 
Python, Java, C++ Python, Java, C++ 

Main Features 

3 Object Detection 

4 Image Classification 

5 Pose Estimation 

6 Text Classification 

7 Image Segmentation 

8 Speech and Gesture 

Recognition’ 

9 Digit Classification 

• Object Detection 

• Image Classification 

• Pose Estimation 

• Text Classification 

• Image Segmentation 

• Speech and Gesture 

Recognition 

Pricing Free Free 

Table 3 – Comparison between TensorFlow Lite and PyTorch SDKs 

 

From this, both SDKs appear to possess similar qualities, both supporting the 

major mobile platforms, programming languages, and main features required for 

the project. However, upon further inspection, due to the unstable nature of 

PyTorch’s development stage – still being in beta, it offers fewer officially 

published examples and well-defined, up to date use cases. In comparison, 

TensorFlow Lite is a mature library that has numerous officially published 

tutorials, guides, and examples, as well as a plethora of third-party projects 

freely available on GitHub. In addition, TensorFlow Lite also shares similarities 

and commonalities with ARCore, thus making it the preferred choice for this 

implementation. 
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4.2.3 Datasets 

Using TensorFlow Lite, the general steps outlined in Figure 9 below were used 

to retrain and embed two models – one for nursery, and another for weaner/grow 

out stage abalone.  

 

 
Figure 11 – Model Implementation Flowchart 

 

A sample collection of around n=105 images of grow-out, weaner and n=130 

nursery abalone obtained by during a James Cook University (JCU) research 

field trip in December 2020 from a farm in Victoria. Images would consist of 

either nursery growth plates with between 0 to upwards of 20 juvenile abalone 

per image, or for grow out and weaner stages, which had from to 10 to 50 per 

plate. With these images collected, a series of pre-processing steps as outlined 

in Figure 10, were used to ensure that the data was of quality and acceptable for 

model training.  

 

First, all images were resized to 416x416 pixels as this is the required input for 

the chosen network architecture. Once resized, and due to the limited amount of 

quality images available for model training, some data augmentation steps were 

applied such as mirroring, rotation, brightness, and noise changes. The aim of 

this technique is to generate more variety and conditions from a single image, to 

simulate the image capturing under different circumstances. This was performed 

to simultaneously test the robustness of the implementation process, increase the 

amount of training data, and prevent issues with overfitting, where the model 

learns the detail and noise in the dataset resulting in reduced performance, or 

underfitting, where the model fails to capture sufficient detail.  
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Each image in both datasets were then manually annotated using the graphical 

interface, LabelImg [51], which produced a series of images and Extensible 

Markup Language (XML) annotation files. The data was then subsequently split 

into training, test, and validation subsets of roughly a 70/15/15% split, 

respectively. This is done so that once the model has been re-trained to classify 

objects based on a specific set of data, the model can be evaluated on new data 

to assess its accuracy. 

 

 

Figure 12 – Image Pre-processing and Annotation Flow 

 

Moreover, for the nursery stage abalone dataset, since we were unable to obtain 

specimens for the experimentation phase, a decision was made to introduce a 

subset of images of groups of small rounded grey pebbles ranging in lengths 

from 10-20mm. A small dataset of these pebbles, annotated and labelled as 

nursery abalone was included in the final dataset for training. Such an approach 

would give us the flexibility to test the counting implementation on 

weaner/grow-out, and nursery stage abalone without hugely impacting the 

overall dataset accuracy.  

  

4.2.4 Training 

To implement an object detection model, it is imperative to understand how the 

transfer learning process can be used to retrain an existing object detection 
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model. Training a model from scratch can take immense amounts of 

computational power and time, so instead, the use of a pre-trained model allows 

for the transference of knowledge from one domain, to another similar one, 

through the reuse of learned information [29]. As such, using a base model such 

as the YOLOv4 checkpoint that is trained on the Common Objects in Context 

dataset – a collection of 330 thousand images with over 80 object classes – 

enables for the transference of knowledge to be applied to new domains, such as 

detecting abalone, without needing to fully train a model [44]. YOLOv4 was 

specifically chosen as our network architecture because it has the nearest real-

time speeds, is lightweight, and still maintains a high level of accuracy compared 

to others which makes it ideal for mobile-based abalone detection. 

 

Figure 13 – YOLOv4 Average Precision versus Frames Per Second 

compared to other Algorithms [34] 

 

During the training process, the initial layers of a Convolution Neural Network 

(CNN) incorporate more generic traits such as edges and blobs, with more 

specific features tailored to the dataset being included in the subsequent upper 
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layers of the network [29]. This means that the removal of the top layers that are 

built around the original task enables the model to be re-trained to perform a 

different, but related task, without the need to build it from the initial layers. As 

part of the training process, the model is fine-tuned part-way through to ensure 

that feature extraction is performant and that its associations are adjusted 

according to the new dataset. The result of this is that the new training rate is 

significantly lower. Each model, for both datasets, was subsequently trained for 

2000 epochs on custom data using YOLOv4 within a the Darknet framework. 

The resulting training performance metrics based on validation data can be seen 

in Table 4 below. 

 Nursery Dataset Weaner/Abalone 

Dataset 

Average Precision 

(AP) 85.12 82.46 

Precision 0.93 0.9 

Recall 0.87 0.84 

F1-Score 0.9 0.87 

Mean Intersection 

over Union (mIoU) 65.49 84.17 

Mean Average 

Precision (mAP) 0.8512 0.8246 

Table 4 – Comparison of Training Performance Metrics for Both Datasets 

 

4.2.5 Model Integration 

After training was complete, the model is then converted into a mobile 

compatible format using conversion libraries. The library chosen for this was 

TensorFlow Lite, and this was because it possessed the qualities which 

supported our project, including it being quite a mature library, so there was 

plenty of information on it, it was interlinked with other AR libraries already 

such as ARCore, it was free and it supports Python and Java, two well-known 

languages to the primary researcher.  
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Using TensorFlow Lite, a simple labels text file is required in the same order 

that the model was trained in so that the objects can be correctly classified. The 

two residual files after the retraining process were then embedded in the project 

structure of the mobile app and the pathing variables were updated to ensure the 

new files associations were correctly connected. From here, images could be 

passed through the model and using the return output, bounding boxes could be 

drawn and their confidence scores could be produced. 

 

4.2.6 Validation Metrics 

In vision-based counting approaches, the count error will enable us to assess 

how accurate the implementation is versus the existing techniques. Counting 

accuracy is calculated by recording the average number of objects counted and 

the ground truth amount across a series of tests and cross referencing the results. 

By taking the ratio of correctly and incorrectly predicted instances to the total 

instances can be used to further analyse the reliability and robustness of the 

model.  

 

𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
) * 100 

 

There are also classification-based metrics based upon the confusion matrix by 

which we can evaluate the accuracy of the model. Firstly, during training the 

model can be tested against the 15% validation data subset for performance 

analysis, the results of which can be found in Table 4. Here, metrics such as 

recall, F1-score, and mIoU are calculated. Recall or sensitivity is used to 

calculate the true predictions from all correctly predicted data, and it involves 

taking the number of correctly counted objects, divided by the total number of 

actual, relevant objects.   
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑂𝑏𝑗𝑒𝑐𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
 

 

F1 score is the weighted average of precision and recall. The F1 score takes the 

precision and recall into account which leads it to usually be a better metric for 

evaluating a model than accuracy as long as false positives and false negatives 

have a similar cost. The F1 score is calculated using the equation: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

Furthermore, Intersection Over Union (IoU) is a metric used specifically for 

visual detection tasks because it computes the difference between ground truth 

annotations and predicted bounding boxes produced by the model. The output 

from an object detection model is the prediction confidence score, and bounding 

box coordinates for each object within the image. Based on the scores of each 

box, unnecessary boxes are removed based on an established threshold value, 

whereby any scores that fail to meet it are not used. 

 

IoU =  
Area of Overlap

Area of Union
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Chapter 5  

 

Experiments with AR Measuring 

Tool  

 

5.1 Abalone Experimental Setup 

For this research, an experimental design will be used where the independent 

variable will be the method of measuring and counting abalone – between 

ground truth, manual estimation to simulate performance from traditional 

techniques used by farmers and comparing it to the automated system. For 

dependent variables, we will be evaluating the change in the speed and accuracy 

of the measuring process when using both a manual approach compared against 

the proposed system, controlling for the species and life stage of abalone being 

evaluated – the Greenlip Abalone. 

 

We tested the prototype system on 24 live mature-sized abalone at the James 

Cook University Campus to evaluate both the counting and measuring method 

and validate the results. As pictured in Figure 13, we followed a general process 

for testing and collecting data using both methods, in a way that was parallel to 

each other. Each method started by collecting data on the speed and accuracy of 

manual methods, before we used estimative counting and measuring techniques 

supported by abalone farming literature, before testing our methods.  
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Figure 14 – Overview of Experiment Design 

 

5.1.1 Experiment Conditions

 
Figure 15 – Abalone Measuring Experimental Setup 

 

Experiments with the 24 live Greenlip Abalone were conducted within a typical 

laboratory setup with overhead lighting. The 24 abalone were placed on a 

gridded plastic tray and were roughly spaced apart. The measuring device was a 

Samsung Galaxy S8 Plus which is considered to be slightly outdated at the time 

of writing, being an older flagship initially released in April 2017. However, the 

model of phone was still capable of running AR-enabled applications. The 

phone was seated in a 32cm long camera gimbal with approximately a 45⁰ tilt. 

The camera gimbal was attached at a 90⁰ angle to a tripod set at a height of 40cm 
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tall. The tray of abalone was then placed within the camera’s view. The 

measuring tool was selected from with the android application and the tripod 

was moved for approximately 11 seconds before a plane was established from 

environmental feature points.  

 

5.2 Original Method  

For data collection, the first step was to measure each of the abalone individually 

by hand with a ruler, record their lengths for use as the ground truth values while 

simultaneously counting the time taken to measure all of them using a 

stopwatch. The resulting Table 5 below was constructed from the collection of 

ground truth measurements which took 148 seconds to record. 

 

 Column 1 (mm) Column 2 (mm) Column 3 (mm) 

A 62 70 49 

B 72 60 54 

C 64 53 62 

D 66 61 60 

E 70 45 60 

F 63 56 51 

G 32 60 50 

H 32 46 52 

Table 5 – Abalone Ground Truth Measurements 

 

For approximation techniques such as those used by farmers, a similar approach 

as detailed in [25] was used. Using pseudorandom number generation, we 

randomly selected 20% of our abalone and used their measurements to 

approximate the lengths of the population. As such, 5 abalone were selected, and 

were hand measured for example, in one instance, our random numbers are 24, 

11, 6, 13 and 9, where Column 1A = 1, Column 2A =2, etc. Keeping the ordering 

of abalone intact, we then measured each abalone by hand such that we ended 
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up with a series of lengths corresponding to their position in Table 5. In our case, 

the lengths recorded were 52, 61, 54, 70, 62. When averaged, it resulted with a 

length of 59.8cm which was then applied to the remainder of the abalone. We 

repeated this process several times, and recorded the time taken with each 

instance.  

 

We then measured using the proposed instrument mounted in the gimble arm, 

with a plane already established. It was observed to be near-impossible to 

measure the abalone object using a stationary camera position, because the size 

of the visual marker would block the other side of the object, and thus, a second 

marker could not be placed. In response, the phone was removed from the 

gimble and moved around from side to side at an arm’s length away which 

allowed for the second marker to be consistently placed. The results of these 

measurements are placed in Table 6 below.  

 

 Column 1 (mm) Column 2 (mm) Column 3 (mm) 

A 51.7 65.2 56 

B 78 68 79 

C 68 51 51 

D 69 72 55 

E 68 49 67 

F 67 60.7 56.9 

G 45 71 62 

H 43 56 67 

Table 6 – Abalone Measurements Using the Proposed Instrument 

 

5.3 Problems with Original Method 

A large contributing factor to the loss of accuracy in these tests may be due to 

the surface in which they were conducted on. ARCore has a difficulty placing 

feature points on surfaces with visual uniformity, such as white tray which is 
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used in these tests can lead to a decrease in average precision. However, a more 

likely explanation is that the methods used to place the measurement markers 

can be incorrect and imprecise because it is entirely dependent on where the user 

places the anchoring positions. Due to this reliance on user input, many factors 

can alter the end results such as the viewing angle of the device itself, and the 

precision of where the anchors are positioned relative to the edges of the object. 

 

5.4 Modified Method 

Thus, to reduce the need for user interaction, the original measurement method 

was modified the include two permanent on-screen markers, denoted by the 

red squares, as visualised in Figure 15 below.  

 

Figure 16 – Modified Measuring Method On-screen Markers  

 

With these defined 2D coordinates on screen, the user simply then needs to align 

the dots with the edges of the object they wish to measure and tap the single 

button at the bottom of the screen, and two rays will be cast from either marker. 
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This way, instead of relying on the user to point and tap to create an anchor 

inaccurately, this allows for much more precision.  

 

The implementation of this modified method was after the initial experiments 

were conducted, and the live abalone were no longer available for testing. As a 

substitute, several Greenlip Abalone shells were obtained and tested on in a 

similar fashion to the previous method with both their ground truth lengths, as 

observed in Table 7 and measurements using the instrument were recorded as 

seen in Table 8. However, the estimation techniques were not applied here and 

instead, a normalised accuracy was calculated between all experiments.  

 

 Column 1 (mm) Column 2 (mm) Column 3 (mm) 

A 52 47 41 

B 40 40 37 

C 39 79 43 

D 40 43 44 

E 41 46 50 

F 47 81 49 

G 37 42 45 

H 35 43 45 

Table 7 – Abalone Shell Ground Truth for the Modified Method 

 

 Column 1 (mm) Column 2 (mm) Column 3 (mm) 

A 54.3 47.7 42 

B 42 43 34.9 

C 41 77.5 43.5 

D 39.8 41 42.7 

E 40.1 47.4 48 

F 44.1 80.4 48.6 

G 35 43.5 41 
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H 32 44.4 42 

Table 8 – Abalone Shell Measurements Using the Proposed Instrument for 

the Modified Method 

 

An interesting observation was made when conducting the experiments with the 

modified method. It was discovered that sometimes, particularly with smaller 

shells, the augmented dots which signify where ARCore has established a plane 

can overlap and interfere with the measurement process, as it can obscure an 

edge. However, the issue can be easily resolved either by physically moving the 

object or re-establishing the plane by moving the device around. 

  

5.5 Fish Experimental Setup 

To further analyse the modified AR measuring method, the experiments were 

extended to other aquatic products to validate robustness in the technique. In 

these experiments, two reef fish were obtained – one Black Pomfret Trevally 

and a Red-Throat Emperor. Like previous measuring experiments, the ground 

truth length values were recorded by hand measuring each fish using a tape 

measure.  

 

5.5.1 Experiment Conditions 

Both fish were kept frozen and were thawed until use to ensure accurate 

measuring. Each fish was placed onto a flat horizontal surface and measured 

using the same phone, with a bright overhead light. Estimation could not be 

conducted in the previous way because only two fish were available for the 

experiment. As such, an assumed estimation accuracy based on multiple abalone 

experiments was substituted and applied to the fish experiments.    

 

Unlike previous experiments for measuring abalone, no tripod was used, instead, 

a handheld method was employed, whereby the device was held at an arm’s 

length away and moved from side to side for plane establishment. The use of 
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real fish for testing meant that the markers had to be oriented to be at the furthest 

distant points at either side of each fish, a demonstration of which can be 

observed in Figure 16 and 17 below. 

 

Figure 17 – Measuring Trevally Fish Using the Modified AR Method 

 

 

Figure 18 – Measuring Red-Throat Emperor Fish Using the Modified AR 

Method 

   

5.6 Results 

From our counting experiments on both mature abalone and juveniles, we have 

found that through the usage of AR, our approach is successfully able to 

outperform manual and estimation techniques used by farmers. In terms of 

accuracy, which is calculated by comparing the total average ground truth length 

for abalone versus the total average measured length using our approach, our 

method shows that the tool initially was underperforming with a 6.8% loss in 

average accuracy across all measurements taken. This was later identified to be 

a result of over-reliance on user interaction, and thus a second iteration was 

developed which saw the use of on-screen markers to eliminate imprecisions. 

As such, the second method of measuring performed highly well during the 
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experiments, achieving an average precision score equal to 99.08%. Figure 18 

below highlights and compares each of the four methods of measuring. 

 

 
Figure 19 – Graph of the Abalone Average Measurement Accuracy  

 

However, in terms of speed, the initial developed method did slightly improve 

upon hand measured systems, reducing the time taken from 150 to 125 seconds, 

and greatly improved on estimation techniques. Yet while the first method did 

increase efficiency, it still suffered in situations where small objects were being 

measured, because often the first marker placement would visually obstruct the 

second one from being placed. This issue was resolved with the second method, 

however, as both markers would be placed concurrently. This also had the 

double benefit of speeding up measurements, as users would only need to simply 

align the markers and tap once, whereas before, they needed to align, place one 

marker, then physically move to place the second, which increased the time 

taken for counting. As seen in Figure 19, the second method of counting was 

able to greatly outperform all other methods, decreasing the time from 125 to 93 

seconds.  
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Figure 20 – Graph of the Time Taken to Measure 24 Greenlip Abalone 

 

For reasons of robustness, the second method was also tested on two species of 

fish, and as observed below in Figure 20, the technique was able to produce 

comparable, high levels of accuracy despite the object being considerably 

larger.   

 

 

Figure 21 – Graph of the Fish Accuracy Measurements Using the Modified 

Method 
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Taking a closer look at the percentage error calculated from the fish 

measurement tests, it can be observed that the technique maintains accuracy to 

within a maximum of 2.5% of the object’s actual size. 

 

 
Figure 22 – Graph Showing the Percentage Error Calculated from the Fish 

Measurement Tests Using the Modified Method 

 

Through the comparison of average measurement accuracies across all of the 

measured objects as visualised in Figure 22, it becomes apparent that the first 

method proposed fell short of expectation and performed poorly compared to 

the other methods. However, with the tweaks in framework design and 

decision to restrict user input, the second implemented method performs 

solidly in all situations with accuracies between 98-100%.  
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Figure 23 – Average Measurement Accuracies for all Experimented 

Methods 
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Chapter 6 

 

Experiments with Object 

Detection Counting Tool 

 

6.1 Abalone Grow out and Weaner Dataset 

6.1.1 Experiment Conditions 

 
Figure 24 – Weaner and Grow out Abalone Counting Experimental Setup 

 

Much like the experimental process undertaken for measuring objects, counting 

was achieved using a tripod mounted-camera setup within a laboratory 

environment at the JCU campus. Sitting flat and parallel to the 24 live abalone, 
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the phone camera was situated 63cm above the tray, ensuring that the full tray 

was visible during the counting process.  

 

Data collection was achieved by taking continuous screen captures of the 

counting process. Once 20 iterations of object counting were complete, abalone 

were slowly, individually removed from the tray, and again, 20 iterations of data 

were captured. In each iteration, the amount of objects correctly counted, 

incorrectly counted and the inference time was collected. This incrementally 

continued up until the dataset was halved to 12 abalone. This alteration was 

conducted to see if changing the amount of objects being detected would affect 

accuracy results. 

  

6.2 Abalone Nursery Dataset  

6.2.1 Experiment Conditions 

 
Figure 25 – Nursery Abalone Experimental Setup 
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For counting juvenile abalone, the lack of any real specimens for 

experimentation meant that they could be conducted outside of the laboratory. 

As such, the counting took place on top of a glossy, reflective black surface in 

an attempt to replicate similar conditions to the surface of water, or the nursery 

abalone growth plates. The counting instrument was suspended using a 32cm 

gimble such that the camera was 60cm and parallel above the round grey pebbles 

imitating juvenile abalone.  

 

A process similar to ones previously described for counting was conducted, 

whereby the correct and incorrect number of objects counted was recorded for 

20 iterations per number of objects. Starting at 24 juvenile abalone, the count 

was slowly decreased until there were only 12 remaining.  

 

6.3 Results 

From our experiments counting weaner/grow-out and nursery abalone, we have 

confirmed that object detection is capable of counting objects in real-time, where 

results are location and network independent, to an extent. When counting up to 

15 objects, the current framework is capable of producing highly accurate results 

for both juvenile and adult abalone from around 95-100%.  However, once the 

count of objects exceeds 15, the accuracy decreases linearly, as seen in Figure 

25, as the technique struggles to recognise the presence of an additional abalone.  
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Figure 26 – Graph of Abalone Counting Accuracy 

 

In terms of time taken, as highlighted in Figure 26, both models were able to 

achieve a modest average inference time for 24 objects equal to 606ms for 

weaner/grow-out and 394ms for nursery stages. This confirms that the 

implemented object detectors are capable of achieving real-time inference while 

still maintaining a high base level of accuracy for up until 15 objects at once. 

 

Manual counting methods are difficult to quantify because it is highly dependent 

on the individual doing the counting. Assuming the average human response 

time is 231ms [52], it would take several seconds for an average person to count 

24 objects with a high probability of achieving 100% accuracy, thus it was not 

considered in these results, as an image processing technique will nearly always 

be much faster.  
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Figure 27 – Graph of Abalone Counting Inference Time 
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Chapter 7  

 

Summary and Discussion 

 

7.1 Summary of Contributions 

Object detection and augmented reality are two rapidly evolving technology 

areas that have attracted many researchers. Through this research thesis, we have 

demonstrated a prototype approach to solving the issues experienced by abalone 

farmers when it comes to monitoring the growth of their populations. This 

research also has the potential the impact other areas of study, particularly fields 

in which more effective, image-based automation is required in unpredictable 

conditions or environments.   

 

In Chapter 2, we analysed and critically reviewed a wide breadth and depth of 

literature relating to the area’s abalone farming, DL, AR, and their applications 

in and outside of aquaculture. Outside of aquaculture, approaches were 

examined to evaluate the effectiveness of AR for measuring objects, and DL for 

counting. We highlight a diverse set of methods, organised into thematic groups, 

and derive the considerable gap where this research resides. 

 

In Chapter 3, a conceptual framework overview is shown which seeks to 

combine and use the strengths of AR and object detection to compliment abalone 

farmer’s growth monitoring practices. Here the major components, general 

decisions and program flow, and design choices for quantitative data collection 

and analysis are described.  
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In Chapter 4, more technical details are discussed and the method of 

implementation, and reasons behind the chosen technologies are discussed. A 

deeper look into the validation metrics to be used in the assessment of the 

proposed instrument.  

 

In Chapter 5, experiments conducted using the proposed measuring system are 

explored. Here, materials and methods of efficiency and accuracy data collection 

are described between the three independent variables of the study, being 

manual, approximative techniques and our AR measuring approach. We also 

explore the findings and re-development of a new robust method for increased 

performance. 

 

In Chapter 6, experiments conducted using the developed counting tool on 

weaner, grow-out and nursery abalone are described. A discussion and 

comparison of manual counting methods versus the proposed instrument is also 

conducted.  

 

Overall, we have shown that our framework is indeed more efficient and 

effective than manual and estimation monitoring methods. This, in turn, 

alleviates the problems of inaccuracy and inefficiency identified within previous 

methods. Our proposed method is real-time, location and network independent 

and it does improve the accuracy and speed of counting and measuring. Object 

recognition has proven to be a promising approach to automate the processes of 

counting abalone at various stages of their lifecycle and can be a good 

foundation for further automation research. Likewise, AR has shown that it is a 

fast and robust way of measuring objects and can be applied many different 

types of objects outside of abalone. 

 

7.2 Discussion 

From the experimental results, we can confidently conclude that our methods 

are both more efficient and accurate than traditional and estimation techniques 
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for counting and measuring abalone. While our methods cannot be used 

simultaneously as we originally intended, the tools by themselves are useful 

and provide a degree of improvement over traditional methods that warrant its 

field usage. 

 

For counting, our method was able to effectively count for up to 15 abalone 

efficiently with between 98-100% accuracy. For more than 15 objects, the 

accuracy slowly decreases linearly.  We found that this seemed odd and 

somewhat contradictory based on our research and experiments, and as such 

would like to discuss this further.  

 

One seemingly explanatory cause is due to the limitations of YOLOv4 

architecture which has historically had issues counting small objects, evident 

through its performance on other datasets with smaller image sizes [34]. We 

believe, due to its single-shot detection architecture, it is not as suitable for 

capturing finer details present in smaller objects and 416x416 images. The 

model possesses a tradeoff of speed over accuracy, which was valued for our 

purpose, but in doing so, it is unable to fully detect all objects in an image to a 

value greater than the minimum specified accuracy threshold value.  

 

Another explanation is our method of experimentation, where the objects may 

have been too close together, or camera too distant away from the subjects 

themselves. Due to the scope of our research and time restrictions, we were 

unable to perform the diverse range of experiments to obtain further results for 

analysis. A potential future direction and solution may be to split the images up 

into smaller regions in real-time and have that be fed into the model for more 

counting performance. 

 

From our testing, measuring using AR has proven to offer major speed 

advantages when it comes to measuring smaller objects, such as weaner abalone 

shells, or larger ones such as reef fish. Our method of measuring demonstrated 
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robustness in either case, where the accuracy remained consistent across 

different sizes of objects, indicating that the method can be extended to other 

applications and fields such as agriculture, on-site training, or education. 

However, in the case of very small objects, AR may not be ideal solution as 

results from experiments revealed that sometimes the augmented information 

can obscure the edges of small objects, such that they are hidden from view. 

 

With these results, it indicates that these approaches can assist farmers in nearly 

doubling their efficiency when stock taking without risking harm or shock to the 

animal, and without them requiring the assistance of trained technical staff who 

are forced to precisely, and time consumingly, remove abalone in a manner to 

prevent death. While this technique will never fully replace the technical 

expertise required to grow abalone sustainably and efficiently, it can serve as an 

optimisation tool, to go alongside farmers for increased productivity and 

objectivity monitoring stock growth. 

 

7.3 Future Work 

The framework described in this research thesis exists mainly as a proof of 

concept. For true integration into an abalone aquacultural farm, additional 

research would be required to find the best approach and method of counting, 

which can recognize multiple, overlapping, moving abalone at various 

orientations and simultaneously measure their lengths, with the added difficulty 

of water reflectivity.  

 

Our implementation also still does not fully overcome the issue of the need for 

trained technical staff, as it still requires manual operation by a user. Additional 

modifications to the approach would revolve around further removing the need 

for user-interaction such as auto-calibration and event triggering, which, in turn, 

would help improve measuring accuracy and reduce data capturing times.  
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The method proposed was entirely tested in laboratory conditions, where 

lighting was consistent, and conditions were calm. As a result, more testing of 

counting is required, with additional variations in conditions, such as moving 

objects, motion blur and ideally in-situ validation. 

 

Finally, due to restrictions in time, full integration between ARCore and 

TensorFlow lite for both real-time measuring and counting simultaneously 

could not be achieved. Further investigation into the combination of these 

technologies could yield valuable results that are widely applicable to areas 

within and outside of aquaculture. The gap identified from our literature 

review still exists and may be worthy of future research with more automated 

methods, such as the employment of drones. 
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